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Abstract. By introducing boson operators, a quantum spherical XY model in the presence of a random
field has been studied by the coherent state path integral approach. The phase diagram is obtained, and
the effects of the random-field fluctuations ∆ on the possibilities of the existence of a ferromagnetic phase
are discussed. At the critical point, ∆c, the order parameter M describing the ordered ferromagnetic phase
disappears as ∝ (∆c−∆)

1/2. Since the model is equivalent to a Bose system, we also show that the phase
transition at zero temperature between the superfluid and the disordered Mott insulator phases occurs at
the chemical potential µ = J0/2, where J0 is the strength of the exchange interaction. As the temperature
T goes to zero, the asymptotic behavior of the entropy and the specific heat are (J0/2T ) exp (−J0/2T )
and (J20/4T

2) exp (−J0/2T ), respectively.

PACS. 75.10.-b General theory and models of magnetic ordering

In the last years, a great deal of work has been de-
voted to the understanding of the phase transitions of
the classical spin systems. In contrast, little attention has
been paid to the study of the quantum spin systems. The
reason is that quantum effects usually create a poten-
tially difficult technical problem [1] due to the requisite
non-commutativity of spin operators in the Hamiltonian.
Lately, there has been renewed interest in the field of
strongly interacting and disordered systems as in the ran-
dom field and spin glass problems. One of the most fun-
damental questions is to know whether these random spin
models have an ordered phase. The most fruitful method
to study disordered systems is the statistical field theory
method [2-5] which allows one to consider the infinite-
range case [6-8] or mean-field models where the saddle
point method provides the exact solution of the problem.
On the other hand, it would be useful to have a model
which can be solved exactly, but which retains the main
features of the original model. Such a model is the spheri-
cal one which will provide a good starting point for study-
ing these spin systems with quenched disorder. The spher-
ical model in the spin representation was first introduced
by Berlin and Kac [9], and has been sucessfully used later
to study a number of problems of phase transitions asso-
ciated with order-disordered phenomena in random spin
systems [10-17]. A review of this subject was given by
Joyce [18].
The disordered XY model was introduced as a simpli-

fied model for a variety of physical systems. Among them
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are vortex glass in type-II superconductors [19], granu-
lar superconductors and Josephson junctions [20], and the
superfluid-insulator transition and boson localization in
disordered boson systems [21-26]. As is well known, the
XY model dates back to 1956 and it is now a standard
model in statistical mechanics [27]. However, quantum
version of the XY model with quenched disorder is much
more complicated, and few results are available [28,29].
Specifically, phase diagram of the quantum XY model
in the presence of random fields has not been reported
up to now. The purpose of this letter is to formulate
the coherent state path integral technique for the quan-
tum spherical XY model in a random field and to re-
port our findings from calculations of the phase diagram.
Since the spin-1

2 XY model is equivalent to a hard-core
boson model [30], thinking of the spin problem in terms
of the boson language and vice versa is fruitful way to
understand the physics of the XY model and related bo-
son model. We start with transforming the spin opera-
tors to bosonic operators, and then construct a quan-
tum spherical version of the model in the boson space.
The phase diagram is obtained, and the effects of quan-
tum fluctuations and randomness on the phase transi-
tion are examined. We find that the ferromagnetic or-
dering is reduced by quantum fluctuations and destroyed
completely by random-field fluctuations with sufficiently
large values of the random-field variance. The model can
also be employed to describe the superfluid-Mott insulator
transition of a Bose system. We display the existence of
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the transition between the superfluid and the Mott insu-
lator phases at a critical chemical potential.
We will consider a spin-12 XY -model consisting of N

interacting spins; the Hamiltonian of the model is given
by

H = −
∑
ij

Jij(S
x
i S
x
j + S

y
i S
y
j )−

∑
i

hiS
x
i , (1)

where Sαi is the α component of a quantum XY -spin oper-
ator at site i, and the Jij are the strength of the exchange
interactions between sites, chosen to be Jij =

1
N
J0 for all

pairs of spins. The scaling with N ensures a well-defined
thermodynamic limit [3-5]. The random external field hi
is an independent random variable with zero mean and
the variance ∆2, i.e.,

〈hi〉h = 0, 〈hihj〉h = ∆
2δij . (2)

In the boson language, the spin operators are represented
by the boson creation a† and annihilation a operators, and
equation (1) can be rewritten as follows [30,27]:

H = −
∑
ij

Jija
†
iaj −

1

2

∑
i

hi(a
†
i + ai), (3)

with the local hard-core boson constraint ni = a
†
iai = 0

or 1. Since such a constraint defines boundaries in Hilbert
space, it is extremely difficult to treat in a path-integral
approach. To avoid the above difficulties, we impose the

spherical constraint in the spin space
∑N
i=1[(S

x
i )
2+(Syi )

2]=
N , which in the boson space, becomes a global hard-core
boson one,

N∑
i=1

a†iai =
1

2
N. (4)

The resulting path-integral theory is applicable to the
present quantum XY model and related boson model un-
der the relaxed constraint (4) which is enforced by intro-
ducing a Lagrange multiplier µ. The model Hamiltonian
(3) with the constraint (4) is, in fact, a boson system with
the boson hopping Jij and the chemical potential µ in the
strong on-site repulsion limit [21]; superfluidity in the bo-
son model described by equation (3) corresponds to the
magnetization in the XY plane. This model can also be
applied to describe other physical systems such as the in-
teraction properties between atoms and the electromag-
netic field [31].
Once the Hamiltonian is written in terms of bosonic

operators ai the partition function, Z = Tr e
−βH, can be

expressed as the coherent state functional integral [32-34]

Z =

∫
D(a, ā;µ) exp[−

S(a, ā, µ)

h̄
], (5)

where the action S(a, ā, µ) is

S(a, ā, µ) =

∫ β̄h
0

dt [
∑
i

āi
∂

∂t
ai −

1

N

∑
ij

J0āiaj

+µ
∑
i

āiai −
1

2

∑
i

hi(āi + ai)− µ
N

2
], (6)

where ai(t) is a c-number, āi is its complex conjugate. In
the following we will take the units h̄ = 1. Introducing a
complex Hubbard-Stratonovich field,

M =
1

N

∑
i

〈ai〉, (7)

the quadratic hopping terms may be decoupled by using
the Hubbard-Stratonovich transformation, resulting in a
single site problem:

Z =

∫
D(a, ā;M, M̄ ;µ)e−J (8)

where

J =

∫ β
0

dt [
∑
i

āi
∂

∂t
ai +

1

2
NJ0M

2 −
1

2
J0M̄

∑
i

ai

−
1

2
J0M

∑
i

āi + µ
∑
i

āiai

−
1

2

∑
i

hi(āi + ai)− µ
N

2
]. (9)

As the operators are now decoupled we can evaluate the
trace of equation (8) as the trace over the boson operators
on a single site raised to the power N and write

Z =

∫
D(a, ā;M, M̄ ;µ)e−β Nf . (10)

In the thermodynamic limit, N → ∞, the integral given
by equation (8) with equation (9) can be performed by the
method of the steepest descent, and the free energy f per
site can be obtained after integration over the quadratic
form in the bosonic variables inside the action J . Assum-
ing that the Hubbard-Stratonovich field is replaced by a
real and static parameter [33-35], the resulting free en-
ergy is easily obtained after averaging over any random
external field distribution subject to the condition given
by equation (2):

f =
1

2
J0M

2 − µ−
J20M

2

4µ
−
∆2

4µ
+ T ln (2 sinh

µ

2T
),

(11)

where T is the temperature T = β−1. In deriving equation
(11) we have made use of the identity of the Gaussian
integrals over pairs of complex conjugate variables

∫ N∏
i=1

dāi dai
2π i

exp (−āiMijaj + λ̄iai + λi āi)

= [detM ]−1 exp(λ̄iM
−1
ij λj). (12)

It is important to point out that in equation (11), the
last term T ln(2 sinh µ

2T ), which comes from the integral
over the quantum harmonic oscillators, is different from
the solution of the classical spherical model [18]. We will
find that this term plays an important role in determining
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the phase transition behavior of the present quantum sphe-
ricalXY model. The saddle-point equations, which can be
found by minimizing the free energy f with respect to µ
and M , yield

J20
4µ2
M2 = 1−

1

2
coth

µ

2T
−
∆2

4µ2
, (13)

µ =
1

2
J0. (14)

The Hubbard-Stratonovich field M , which in fact, is the
expectation value of the XY -plane spin component, cor-
responds to the order parameter describing the ferromag-
netic ordering in the XY -model. The state with M = 0 is
the paramagnetic one. Analogously, in the boson problem,
M = 0 and M 6= 0 correspond to a Mott insulator phase
and to a superfluid one, respectively.
It is important to consider some special cases at zero

temperature. The first one is the case ∆ = 0, which is in-
teresting in describing the superfluid-insulator transition
of the pure Bose system. The corresponding Hamiltonian
equation (3) with (4) simplifies to [36]

H = −
∑
ij

Jija
†
iaj + µ

∑
i

a†iai. (15)

In this case, the spherical constraint does not appear, and
µ in equation (15) becomes the chemical potential fixing

the average boson density n = a†iai. The same steps as
above lead to a free energy of the pure boson system given
by

f =
1

2
J0(1−

J0

2µ
)M2. (16)

This implies that for the chemical potential µ ≤ µc = J0/2
the ground stable state should be the superfluid phase, but
when the converse is true, the only stable phase which
remains is the disordered Mott insulator one.
The second case is ∆ 6= 0, and the corresponding

saddle-point equations (13) and (14) reduce to

M = (
1

2
−
∆2

J20
)1/2. (17)

It is straightforward to see from equation (17) that in the
absence of random fields, ∆ = 0, the order parameter M
of this XY model reduces from the classical value M = 1
to the present quantum result M =

√
2/2. This means

that quantum fluctuations tend to weaken the ordered fer-
romagnetic behavior, but do not suppress completely the
ferromagnetic ordering. On the other hand, as the strength

of random field ∆ approaches ∆c =
√
2
2 J0, the order pa-

rameter M disappears as ∝ (∆c −∆)1/2, indicating that
for ∆ > ∆c the ground state becomes a paramagnetic one.
In the present case, we find that the strength of random
field at T = 0 plays a similar role as the temperature; the
quantum effects are displayed only clearly by the reduc-
tion of the magnetization.

Fig. 1. Phase diagram for the quantum spherical XY model
in a random field. Here Tc is the critical temperature and ∆ is
the intensity of the random field. Tc and ∆ are scaled by J0.

We now turn to the phase transition properties of the
quantum spherical XY -model at a finite-temperature T 6=
0. From equations (13, 14) we will find that as one in-
creases the temperature T , the order parameter M van-
ishes as M ∝ (Tc − T )β with critical exponent β = 1/2.
Figure 1 shows the dependence of the critical temperature
Tc on the strength of random field ∆, i.e., on the leftside
of this curve the ferromagnetic phase is stable. The fer-
romagnetic transition temperature Tc decreases with an
increase of the strength of the random field ∆, and van-
ishes for the critical value of the random-field variance
∆c =

√
2
2 J0. Finally, the present quantum bosonic theory

gives the following asymptotic behavior for the entropy
and the specific heat:

S(T )|T→0 ∝
J0

2T
exp (−

J0

2T
), (18)

C(T )|T→0 ∝
J20
4T 2
exp (−

J0

2T
). (19)

We see that in this model the entropy and the specific heat
are always positive at finite temperatures and vanish as
T → 0. This result is in contrast to the classical spherical
model [18] where the entropy approaches −∞ and the
specific heat keeps constant as T → 0, respectively. This is
a consequence of the logarithmic term present in equation
(11), which is due to a pure quantum contribution.
In conclusion, we have investigated the static prop-

erties of the quantum spherical XY model in the pres-
ence of random fields. Replacing the spin operators by
the boson ones in the bosonic representation, the model
becomes equivalent to a boson one, and can be solved ex-
actly by the use of the coherent state functional integral.
This will provide a good starting point for further study of
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the coherent-state path integral approach of the quantum
magnets and boson-Hubbard problems. We have obtained
a set of saddle-point equations describing the phase transi-
tions of the model considered. The model displayed a tran-
sition between the ferromagnetic and the disordered para-
magnetic phases as a function of the strength of random
fields. It was demonstrated that quantum fluctuations are
to reduce somewhat the value of the magnetization, but do
not destroy the ordered ferromagnetic phase. By contrast,
the randnom fields make the ferromagnetic ordering un-
stable, and even the boundary of the ferromagnetic phase
can be destroyed, which depends strongly on the variance
∆. We also showed a critical chemical potential µc =

1
2J0

distinguishing the superfluid phase from the disordered
Mott insulator phase in a pure boson system. We have
seen that the entropy of this model exhibits the expected
physical behavior when the temperature approaches zero.
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